US009417869B2

a2z United States Patent (10) Patent No.: US 9,417,869 B2

Elder et al. 45) Date of Patent: *Aug. 16,2016
(54) VISUALIZING A CONGRUENCY OF (56) References Cited
VERSIONS OF AN APPLICATION ACROSS
PHASES OF A RELEASE PIPELINE U.S. PATENT DOCUMENTS
(71) Applicant: International Business Machines 2005/0074022 Al N 4/2005 Kato
Corporation, Armonk, NY (US) 2006/0015807 Al 1/2006 Chellis GOGF 17/2288
P ’ g 715/229
. 2006/0064634 Al 3/2006 Dettinger et al.
(72) Inventors: Michael D. Elder, Durham, NC (US); 2007/0011334 Al* 1/2007 Higgins GO6F 11/3604
Sara Russell, Ridgeville, OH (US); 709/227
Lucinio Santos, Durham, NC (US); 2007/0109303 Al* 5/2007 Muramatsu G01C 21/32
345/440
é‘;ﬁ:{;’[gﬁ‘zgsih;fﬁlg’rgwgf&’(e 2008/0059894 Al* 3/2008 Cisler GOGF 11/1469
4 > . 4 715/762
T ille, CT (US .
erryville, €T (US) (Continued)
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION, OTHER PUBLICATIONS
Armonk, NY (US) Gall et al, Visualizing Software Release Histories: The Use of Color
N - and Third Dimension, Software Maintenance, 1999. (ICSM ’99)
(*) Notice: SUbJeCt. to any dlSCIalmer{ the term of this Proceedings. IEEE International Conference on Aug. 30, 1999, pp.
patent is extended or adjusted under 35 09-108.
U.S.C. 154(b) by O days. (Continued)
This patent is subject to a terminal dis-
claimer. .
Primary Examiner — Chameli Das
(21) Appl. No.: 14/537,431 (74) Attorney, Agent, or Firm — Steven L. Nichols; Fabian
Vancott
(22) Filed: Nov. 10, 2014
(65) Prior Publication Data 7 ABSTRACT
US 2016/0132324 A1 May 12, 2016 A system for visualizing a congruency of versions of an
’ application across phases of a release pipeline includes a
(51) Int.CL selecting engine to select a phase from a number of phases; a
GO6F 9/44 (2006.01) representing engine to represent, via a user interface (UI), a
GO6F 9/445 (2006.01) congruency for a number of versions of an application com-
GO6F 3/0482 (2013.01) pared against a target version of the application across the
GO6F 3/0484 (2013.01) phases of a release pipeline, the congruency for the number of
(52) US.CL versions of the application represented with identifiers; a
CPC GOGF 8/71 (2013.01); GOGF 3/0482 differentiating engine to differentiate a latest-deployed ver-
(2013 01); GO6F 3/0484é (2613 01); GO6F sion of the application against a planned version of the appli-
e 8/65 (261 3.01) cation in a particular environment; and a comparing engine to
(58) Field of Classification Search ' compare, based on a selection, properties of the versions of
CPC oo Goer g/71 the application.
USPC ittt 717/120, 121

See application file for complete search history.

"N

18 Claims, 11 Drawing Sheets

US 9,417,869 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0178153 Al* 7/2008 FoXcccovvvieiiinns GOGF 9/4435
717/122

2011/0106795 Al* 5/2011 Maim ... GO6F 17/2229
707/728

2011/0282575 Al* 11/2011 Masuda GO1C 21/3626
701/533

2012/0254865 Al* 10/2012 Saekic........ GO6F 9/45533
718/1

2015/0007155 Al* 1/2015 Hoffman GOG6F 8/65
717/168
2015/0100955 Al* 42015 Chenccooeevveiini. GOG6F 8/65
717/170

OTHER PUBLICATIONS

List of IBM Patents or Patent Applications Treated as Related; Jun. 8,
2015.

* cited by examiner

U.S. Patent Aug. 16, 2016 Sheet 1 of 11 US 9,417,869 B2

100
—s\\\‘

Database
114
Applications Visualizing System
116 110

Representing

Engine
/ 112

106

104 /

102

Fig. 1

US 9,417,869 B2

Sheet 2 of 11

Aug. 16, 2016

U.S. Patent

o

v-cle
sulbug Buuedwon

Z ‘b4

(44
aulbu3g Bunenuaiayiqg

¢cle
aulbug Bunuesa.idey

R4 Y4
aulbu3g bunos|eg

0l¢
woelsAg Buiziensin

9-81¢ v8le Z8l¢
OM] UOQISIBA OM] UOISIBA OM] UOISIBA
O uoyeo)ddy d uojjeolddy v uojeol|ddy

G81¢ t8le =812
BUQ UOISIOA BUQ UOISIOA BuQ UOISIBA
O uopeolddy d uojjeolddy Y uoieo||ddy

€-are Z9lg I-91¢
O uopeolddy g uoneoljddy v uojeo|ddy

vie
aseqgeleq

4/ 002

US 9,417,869 B2

Sheet 3 of 11

Aug. 16, 2016

U.S. Patent

£ b4

o 4%
)
Z-08€_] el 08
...... v8re
e g uoneojddy
43 egle
¥'€°C UQISIoN 2 uoneolddy
Ve A3 t0% Z]IE
1'V'Z UOISIBA L'¥'Z Uoisiop g uoneol|ddy
Z-cct Z-0c¢ 18T€
0'¥'C UoIsIap 0'¥'¢ UoIsIap v uoneolddy
I¥ee - T228 e 9T
0'{'Z UOISIBN '€ UOISIBA UOISIOA oses|ay
(213
suoneoiddy
€-80¢ Z-80¢ 1-80¢€ 80¢€
usuwiuoliAug |- 1d juswiuoliAug €-11S juswiuoJiaug L-A3Q SjuUswIuodIAUg
€-90¢ ¢-90¢ 1-90€ 908
1$9] @ouBWIOLSd 1s9] uoneibaiul WelSAS uswidojsasq soseld
v-20¢ €-¢0¢ Z-¢0¢ 1-20€
aseyd piyL aseyd puoseg aseyd 1s414 lapesH

00¢
(In) eoepslU| oSN

v/l L0g

US 9,417,869 B2

Sheet 4 of 11

Aug. 16, 2016

U.S. Patent

p "bi4

vy

ever

cvey —

¢-0ey

.

)

)

F4%7
1s0)e

78y
g uoneolddy

=71

O VUGV

L0 HoIsian

g8y
O uoneoljddy

¢8ly
g uoneolddy

[-8L¥
v uoljeoljddy

¢-80¥
JuswiuoldiAug -1 43D

L-801

juswuoliaug L-A3d

oLy
uolsie/\ eses|ey

(%%
suoleolddy

30V
SJUBWIUOIIAUT

€-90v
UOREBOIILISD

¢-90v
uswdolarag

[-907
1s9]e

90%
Seseld

v-cov
9selyd pJyL

¢-c0¥

9SBld puooeg

¢-¢0v
9SBld Isdld

] Z
lepeaH

00%

(1n) @oepSlU| JosN

(/I LO¥

US 9,417,869 B2

Sheet 5 of 11

Aug. 16, 2016

U.S. Patent

L-¥2S]

¢-0EG

® 7S
S 188187

v-vcs ¥-8lG
0'¢’¢ UoIsiap g uonealddy
(o 74 ¢-81g
L0’} uoIsieA 7 uoneolddy
757G i ¢8lg
Z'0'gV UOISIBA g uoieo|iddy
1-8LS
Y uoieoljddy
<] %]
uoIsia)\ eses|ay
(25
suoneolddy
2-809 L-80G 806
JUBWUOMIAUT L-193D uBsWUONIAUT L-AT(J sjuswiuoIAUg
€-906 ¢-90G 1-909 906G
uoneoyien Juswidojaaeq 1s91E7 saseld
¥-c0s €-¢0S ¢-¢0S L-¢0g
aseyd piyL aseyd puooesg aseyd 114 JopesH

005
(In) eoepsiu| Josn

v/l L0S

US 9,417,869 B2

Sheet 6 of 11

Aug. 16, 2016

U.S. Patent

g6 b4

¢0eS

P Z16
- 1s9)e

1-0€9

772G A

£-v2s 1

Al 74 N

781G
@ uoneolddy

€-8L6
D uoneoiddy

¢-81G
g uones||ddy

1-8LG
v uoneoddy

¢-806G
JuswuodIAug |-143D

L-80G
JuswuoaAug L-A3d

91%
uoIslop eses|ay

718
suonesiddy

809
SIUSLWIUOJIAUT

€905
uoneayLe)

¢-909
juswdojensq

[-90%
1se1e]

90S
seseld

¥-c0s
JNo4 uwinjon)

€-¢09
9SBld puodsg

¢¢09
9SEld 1Sl

1-¢0S
lapeaH

(In) @depEIU| JosN

[

(/l LGS

US 9,417,869 B2

Sheet 7 of 11

Aug. 16, 2016

U.S. Patent

V-¥29

€-¥29

¢ ¥297

9-819
@ uoneolddy
€819
O uoneolddy
L=$29 2819
AN HOISION g uoneo|ddy
1-819
— v uoneoljddy
¢-9¢9 1-9€9 9¢9 —
usuodwon uld Wwsuodwon Aeldsig sjusuodwon a19
uolsiap ases|ay
919
Z7e9 T7E9 ve9 suonealiddy
om] sneg auQ snie1g S8sSnIeIg 309
SIUSWIUOJIAUT
— 909
¢-¢£9 L-¢€9 €9 seselyq
£'0'2Y UoIsIap €7 LV UoISIap SUOISIBA
Z0E9 1-059 0c9 ;M%wﬂ
1UBWUOJIAUT |-AT(Q JUBWIUOJIAUT 1S81ET SJUBLIUOIIAUT
or9
JapesH
9

1N uosuedwon

009
(IN) @oep8lU| oSN

/l 109

US 9,417,869 B2

Sheet 8 of 11

Aug. 16, 2016

U.S. Patent

P29 9819
@ uoneoljddy
£-v29 €819
D uoneolddy
I-%29 ¢-819
Z-vZ9 Z-0-pV-HoISIoN g uoneolddy
€-9¢9 ¢-9¢€9 L-9€9 9€9
wsuodwon Aedsig jusuodwon g wsuodwon Aedsig sjusuoduwon
€-pE9 A7)) vE9
9aIy] smeig om]| snesg auQ sneg sasnielg
€-2€9 2-¢€9 1-2€9 €9
Z 0PV Uoisiap £°0°ZY UOISIBA €7 LV UoISIBA suoIsSIoN
€-0€9 ¢-0€9 L-0€9 0€9
JUBWIUOIIAUT L-1¥TD uswiuodiaug L-A3JQ JUSWIUOJIAUS 1S8]1ET SIUBWUOUIAUT
0v9
JapesH]
Zv9
IN uosuedwo)
059
(1n) @2eUBIU| JBSN (/l LG9

U.S. Patent

Aug. 16, 2016

N

Sheet 9 of 11

START

Represent, via a user
Interface (UI), a
congruency for a
number of versions of
an application
compared against a
target version of the
application across
phases of a release
pipeline, the
congruency for the
number of versions of
the application
represented as
Identifiers

01

l

Differentiate a latest
deployed version of
the application against
a planned version of
the application in an
environment

02

|

Compare, based on a

selection, properties of

the versions of the
applications

703

(o)
Fig. 7

US 9,417,869 B2

U.S. Patent

800 \

Aug. 16, 2016

START

Sheet 10 of 11

Select a phase from a
number of phases

01

L

l

Represent, via a user
interface (Ul), a
congruency for a
number of versions of
an application
compared against a
target version of the
application across the
phases of a release
pipeline, the
congruency for the
number of versions of
the application
represented as
identifiers

02

Differentiate a latest
deployed version of
the application against
a planned version of
the application in an
environment

803

Compare, based on a
selection, properties of
the versions of the
applications

804

END

Fig. 8

US 9,417,869 B2

U.S. Patent Aug. 16, 2016 Sheet 11 of 11 US 9,417,869 B2

900 ——— Visualizing System

902 ——1 Representing Engine

904 ——11 Differentiating Engine

906 ———u- Comparing Engine

008 —1F ~ — ~ SoecingEngne

1000

/

Memory Resources 1004
1006 Phase Selector
1008 Target Version Identifier
1010 Identifier Determiner
1012 Identifier Renderer
1014 Version Exchanger
1016 Coordinate Overlapper Processing
Resources
1018 Latest Deployed Version Renderer .
1002
1020 Specific Version Selector
1022 Properties Displayer

Fig. 10

US 9,417,869 B2

1
VISUALIZING A CONGRUENCY OF
VERSIONS OF AN APPLICATION ACROSS
PHASES OF A RELEASE PIPELINE

BACKGROUND

The present invention relates to visualizing a congruency
of versions of an application, and more specifically, to visu-
alizing a congruency of versions of an application across
phases of a release pipeline.

The lifecycle of an application may include a number of
phases, such as a development phase, a certification phase, a
quality assurance phase, a performance test phase, a system
integration phase, a production phase, and other phases. Each
of these phases may include one or more versions of the
application. The phases aid a release manager to visualize the
delivery of the application throughout the lifecycle of the
application.

BRIEF SUMMARY

A method for visualizing a congruency of versions of an
application across phases of a release pipeline includes rep-
resenting, via auser interface (UI), a congruency for a number
of versions of an application compared against a target ver-
sion of the application across phases of a release pipeline, the
congruency for the number of versions of the application
represented as identifiers, differentiating a latest-deployed
version of the application against a planned version of the
application in a particular environment, and comparing,
based on a selection, properties of the versions of the appli-
cation.

A system for visualizing a congruency of versions of an
application across phases of a release pipeline includes a
selecting engine to select a phase from a number of phases, a
representing engine to represent, via a U, a congruency for a
number of versions of an application compared against a
target version of the application across the phases of arelease
pipeline, the congruency for the number of versions of the
application represented as identifiers, a differentiating engine
to differentiate a latest-deployed version of the application
against a planned version of the application in a particular
environment, and a comparing engine to compare, based on a
selection, properties of the versions of the application.

A computer program product includes a computer readable
storage medium, the computer readable storage medium hav-
ing computer readable program code embodied therewith.
The computer readable program code having computer read-
able program code to represent, via a Ul, a congruency for a
number of versions of an application compared against a
target version of the application across phases of a release
pipeline, the congruency for the number of versions of the
application represented as identifiers.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The accompanying drawings illustrate various examples of
the principles described herein and are a part of the specifi-
cation. The examples do not limit the scope of the claims.

FIG. 1 is a diagram of an example of a system for visual-
izing a congruency of versions of an application across phases
of a release pipeline, according to one example of principles
described herein.

FIG. 2 is a diagram of an example of a system for visual-
izing a congruency of versions of an application across phases
of a release pipeline, according to one example of principles
described herein.

10

20

40

45

50

55

60

65

2

FIG. 3 is a diagram of an example of a release pipeline,
according to one example of principles described herein.

FIG. 4 is a diagram of an example of selecting a phase from
a number of phases in a release pipeline, according to one
example of principles described herein.

FIG. 5A is a diagram of an example of differentiating a
latest-deployed version for the application against a planned
version of the application in a particular environment, accord-
ing to one example of principles described herein.

FIG. 5B is a diagram of an example of differentiating a
latest-deployed version for the application against a planned
version of the application in a particular environment, accord-
ing to one example of principles described herein.

FIG. 6A is a diagram of an example of comparing, based on
a selection, properties of versions of an application, accord-
ing to one example of principles described herein.

FIG. 6B is a diagram of an example of comparing, based on
a selection, properties of versions of an application, accord-
ing to one example of principles described herein.

FIG. 7 is a flowchart of an example of a method for visu-
alizing a congruency of versions of an application across
phases of a release pipeline, according to one example of
principles described herein.

FIG. 8 is a flowchart of an example of a method for visu-
alizing a congruency of versions of an application across
phases of a release pipeline, according to one example of
principles described herein.

FIG. 9 is a diagram of an example of a visualizing system,
according to the principles described herein.

FIG. 10 is a diagram of an example of a visualizing system,
according to the principles described herein.

Throughout the drawings, identical reference numbers
designate similar, but not necessarily identical, elements.

DETAILED DESCRIPTION

The present specification describes a method and system
for visualizing a congruency of versions of an application
across phases of a release pipeline, such that difference and
similarities between several versions of several applications
for several phases are visually represented.

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves

US 9,417,869 B2

3

or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which

10

15

20

25

30

35

40

45

50

55

60

65

4

implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which comprises one or more executable
instructions for implementing the specified logical
function(s). In some alternative implementations, the func-
tions noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of'the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

As noted above, the lifecycle of an application may include
anumber of phases. These phases may include a development
phase, a certification phase, a quality assurance phase, a per-
formance test phase, a system integration phase, a production
phase, and other phases. Each of the phases may include one
or more versions of the application. The phases aid a release
manager to visualize the delivery of the application through-
out the lifecycle of the application.

Often, the lifecycle of the application may be represented
as a table. The table may include an application and the
versions of the application for each of the phases. A user may
manually navigate the table to retrieve information, such as
properties about the versions of the application for each of the
phases. The user may manually compare the properties for
several versions of the application for several phases. As a
result, the user manually determines differences and similari-
ties between the several versions of the application for the
phases.

The table may include several applications, several ver-
sions for each of the applications, and several phases. Manu-
ally determining differences and similarities between several
versions of several different applications over several phases
may be a burdensome task for the user.

The principles described herein include a system and a
method for visualizing a congruency of versions of an appli-
cation across different phases of a release pipeline. Such a
system and method includes representing, via a user interface
(UI), a congruency for a number of versions of an application
compared against a target version of the application across
phases of a release pipeline, the congruency for the number of
versions of the application represented as identifiers, differ-
entiating a latest-deployed version of the application against
a planned version of the application in a particular environ-
ment, and comparing, based on a selection, properties of the
versions of the application. Such a method and system visu-
ally represents a congruency of different versions of the appli-

US 9,417,869 B2

5

cations across the phases of a release pipeline. As a result, the
system and method visually aids a user to determine differ-
ences and similarities between several versions of several
applications for several phases.

In the specification and appended claims, the term “phase”
means a stage of development for an application. In various
examples, a phase may be a development phase, a certifica-
tion phase, a quality assurance phase, a performance test
phase, a system integration phase, a production phase, other
phases, or combinations thereof. Other phases may be suited
to aid a release manager to visualize the delivery of applica-
tions throughout the lifecycle.

In the specification and appended claims, the term “appli-
cation” means one or more set of computer programs
designed to carry out a specific task. During development and
thereafter, an application may include a number of versions.
These different versions may allow an application to execute
in different specific environments. Alternatively, the version
may correspond to a phase that the application is currently in.

In the specification and appended claims, the term “target
version” means a specific version of an application that all
other versions of the application are compared against. A user
or developer may select the target version. Alternatively, the
user may select a phase which in turn dictates a target version.

In the specification and appended claims, the term “first
identifier” means a mechanism to visually aid a user to iden-
tify a version of an application that matches a target version of
that application. More specifically, the first identifier may aid
the user to visually determine that a version of an application
is the same as a target version of the application. For example,
the first identifier may be represented as a specific color, line
weight, a numeric or other scale, a pattern, other representa-
tions, or combinations thereof. As will be described in the
specification, the first identifier may be a horizontal pattern
which usually signifies a positive result or ability.

In the specification and appended claims, the term “second
identifier” means a mechanism to visually aid a user to iden-
tify a concurrency of a version of an application when com-
pared against a target version of the application. More spe-
cifically, the second identifier may aid the user to visually
determine how similar other versions of an application are to
the target version of the application. For example, the second
identifier may be represented as a pattern such as dots of
varying intensity, varying intensity color, different line
weights, a numeric or other scale, other representations, or
combinations thereof. As will be described in the specifica-
tion, the first identifier may be a dot pattern. The second
identifier’s intensity may be varied such that a user may
visually determine the concurrency of a version of an appli-
cation when compared against a target version. For example,
the darker the dot pattern of the second identifier, the more the
indicated version of an application matches the target version
of the application.

In the specification and appended claims, the term “third
identifier” means a mechanism to visually aid a user to iden-
tify a latest-deployed version of the application. For example,
the third identifier may be represented as a color of varying
intensity, different line weights, a numeric or other scale, a
pattern, other representations, or combinations thereof. As
will be described in the specification, the third identifier may
be the color white.

In the specification and appended claims, the term “envi-
ronment” means a computer operation system having a num-
ber of characteristics based on hardware and applications.
The characteristics based on hardware may include memory,
processor, networking, storage, other characteristics for hard-
ware, or combinations thereof. The characteristics based on

10

15

20

25

30

35

40

45

50

55

60

65

6

applications may include an operating system, middleware, a
version of an application, other characteristics for applica-
tions, or combinations thereof.

Further, as used in the present specification and in the
appended claims, the term “a number of” or similar language
means any positive number.

In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the present systems and methods.
It will be apparent, however, to one skilled in the art that the
present apparatus, systems, and methods may be practiced
without these specific details. Reference in the specification
to “an example” or similar language means that a particular
feature, structure, or characteristic described in connection
with that example is included as described, but may not be
included in other examples.

FIG. 1 is a diagram of an example of a system for visual-
izing a congruency of versions of an application across phases
of a release pipeline, according to one example of principles
described herein. As will be described below, a visualizing
system is in communication with a network to represent, via
a UL a congruency for a number of versions of an application
compared against a target version of the application across
phases of a release pipeline. The congruency for the number
of versions of the application is represented by various iden-
tifiers. The visualizing system further differentiates a latest-
deployed version of the application against a planned version
of the application in a particular environment. Further, the
visualizing system compares, based on a selection, properties
of the versions of the application.

As illustrated in FIG. 1, the system (100) includes a user
device (102). In an example, the user device (102) includes a
display device (104). As will be described in other parts of this
specification, the display device (104) may be used to display,
via a Ul, a representation of a release pipeline to a user. The
release pipeline may include a number of phases. The number
of phases may include a development phase, a certification
phase, a quality assurance phase, a performance test phase, a
system integration phase, a production phase, and other
phase. The phases aid a release manager to visualize the
delivery of applications throughout the lifecycle of the appli-
cations. Further, the release pipeline may include a number of
applications and versions of those applications. As a result,
the display device (104) represents the release pipeline to a
user.

As illustrated, the system (100) includes a database (114).
In this example, the database (114) stores, in memory, a
number of applications (116). As will be described in other
parts of this specification, the applications (116) may be used
to aid a visualizing system (110) to display a representation of
the applications (116) and versions of the applications (116)
within the release pipeline on the display device (104).

As illustrated in FIG. 1, the system (100) includes a visu-
alizing system (110). The visualizing system (110) may be
used to represent, via a Ul, a congruency for a number of
versions of an application compared against a target version
of the application across phases of a release pipeline. Again,
the congruency for the number of versions of the application
represented by a number of identifiers. These identifiers may
include a first identifier and/or a second identifier. As will be
described in later parts of this specification, the first identifier
represents versions of the application that match the target
version. The second identifier represents a degree to which
the versions of the application match the target version. More
information about the identifiers will be described in other
parts of this specification.

US 9,417,869 B2

7

The visualizing system (110) differentiates a latest-de-
ployed version of the application against a planned version of
the application in a particular environment. In an example, the
latest-deployed version of the application may be marked
with a third identifier.

The visualizing system (110) further compares, based on a
selection, properties of the versions of the application. In this
example, visualizing system (110) allows a user to select
several versions of the application and display, via the display
device (104), properties of the versions of the applications. As
aresult, differences and similarities between several versions
of several applications for several phases are visually repre-
sented. More information about the visualizing system (110)
will be described in other parts of this specification.

While this example has been described with reference to
the visualizing system being operated over the network, the
visualizing system may be stored and operated locally on a
single machine. For example, the visualizing system may be
integrated into a user or client device, a server, a database,
other locations, or combinations thereof.

FIG. 2 is a diagram of an example of a system for visual-
izing a congruency of versions of an application across phases
of a release pipeline, according to one example of principles
described herein. As mentioned above, a visualizing system is
in communication with a network to represent, via a Ul, a
congruency for a number of versions of an application com-
pared against a target version of the application across phases
of a release pipeline. The congruency for the various versions
of the application is represented by identifiers. The visualiz-
ing system further differentiates a latest-deployed version of
the application against a planned version of the application in
a particular environment. Further, the visualizing system
compares, based on a selection, properties of the versions of
the application.

As illustrated in FIG. 2, the system (200) includes a user
device (202). In an example, the user device (202) includes a
display device (204). As mentioned above, the display device
(204) may be used to display, via a Ul, a representation of a
release pipeline to a user, including a number of phases within
that pipeline. The number of phases may include a develop-
ment phase, a certification phase, a quality assurance phase, a
performance test phase, a system integration phase, a produc-
tion phase, and other phases. The phases aid a release man-
ager to visualize the delivery of applications throughout the
lifecycle for a number of applications and versions of the
applications. As a result, the display device (104) displays the
release pipeline to a user. More information about the release
pipeline will be described in FIG. 3.

In an example, the system (200) includes a database (214).
In this example, the database (214) stores, in memory, a
number of applications (216). As illustrated, the database
(214) includes application A (216-1), application B (216-2),
and application C (216-3). Further, each of the applications
(216) may include a number of versions (218). For example,
application A (216-1) includes application A version one
(218-1) and application A version two (218-2). Application B
(216-2) includes application B version one (218-3) and appli-
cation B version two (218-4). Application C (216-3) includes
application C version one (218-5) and application C version
two (218-6). As mentioned above, the applications (216) may
be used to aid a visualizing system (210) to display the appli-
cations (216) and the versions (218) in the release pipeline in
the display device (204).

As illustrated in FIG. 2, the system (200) includes a visu-
alizing system (210). The visualizing system (210) includes a
number of engines (212). The engines (212) refer to a com-
bination of hardware and program instructions to perform a

20

25

40

45

50

55

8

designated function. Each of the engines (212) may include a
processor and memory. The program instructions are stored
in the memory and cause the processor to execute the desig-
nated function of the engine. As illustrated, the visualizing
system (210) includes a selecting engine (212-1), a represent-
ing engine (212-2), a differentiating engine (212-3), and a
comparing engine (212-4).

As mentioned above, the visualizing system (210) includes
the selecting engine (212-1). The selecting engine (212-1)
selects a phase from a number of phases. As will be described
in other parts of this specification, a representation of a
release pipeline may be displayed to a user via a display
device (204). As indicated, the release pipeline includes a
number of phases, such as a development phase, a certifica-
tion phase, a quality assurance phase, a performance test
phase, a system integration phase, a production phase, and
other phase. A user may select at least one of the phases, via
the user device (202), and the selecting engine (212-1)
receives the selection. For example, the user may select at
least one of the phases by clicking a button on a mouse
associated with the user device (202).

As mentioned above, the visualizing system (210) includes
the representing engine (212-2). The representing engine
(212-1) represents, via a Ul, a congruency for a number of
versions of an application compared against a target version
of the application across phases of a release pipeline, the
congruency for the number of versions of the application
represented by identifiers. For example, when a user selects a
phase, the user also in turn selects a target version of the
application. As a result, the other versions of the application
can be compared against the target version of the application
across the phases of the release pipeline.

As mentioned above, the identifiers may include a first
identifier. The first identifier identifies versions of the appli-
cation that matching the target version. The degree to which
the compared version must match the target version to receive
the first identifier can vary from identical to not identical, but
matching to a specified degree or percentage. In a following
illustrated example, the first identifier is a horizontal pattern.
As a result, versions of the application that match the target
version may be rendered as horizontal patterns.

As mentioned above, the identifiers may include a second
identifier that represents a degree to which the versions of the
application match the target version. In an example, the sec-
ond identifier is rendered as an intensity of a dot pattern,
varying line weights, a numeric or other scale, or combina-
tions thereof. In the following illustrated example, the second
identifier is rendered as an intensity of a dot pattern. The
darker, i.e. the more intense, the dot pattern, the closer the
versions of the application matches the target version.

Returning to FIG. 2, the representing engine (212-1) rep-
resents, via a Ul, a congruency for a number of versions of an
application compared against a target version of the applica-
tion across phases of a release pipeline, the congruency for the
number of versions of the application represented as identi-
fiers by identifying the target version. As mentioned above,
this may be accomplished when a user selects a phase.

Further, the representing engine (212-1) represents, via a
Ul, a congruency for a number of versions of an application
compared against a target version of the application across
phases of a release pipeline. The congruency for the number
of versions of the application is represented by the first and
second identifiers as described above.

The visualizing system (210) also includes the differenti-
ating engine (212-3). The differentiating engine (212-3) dif-
ferentiates a latest-deployed version of the application
against a planned version of the application in a particular

US 9,417,869 B2

9

environment. As will be described in other parts of this speci-
fication, the differentiating engine (212-3) exchanges, based
on a selection of a user, the latest-deployed version of the
application and the planned version of the application to a
foreground or a background of the UI. Further, the differen-
tiating engine (212-3) overlaps coordinates associated with
the latest-deployed version of the application and the planned
version of the application in the Ul In an example, all ele-
ments displayed in the Ul are defined and displayed via coor-
dinates associated with each of the elements. Further, the
coordinates determine where to display each of the elements
in the Ul. In an example, by overlapping coordinates associ-
ated with the latest-deployed version of the application and
the planned version of the application in the UI creates a
stacking effect to aid the user in distinguishing the latest-
deployed version of the application and the planned version
of'the application in the Ul. The differentiating engine (212-
3) further renders the latest-deployed version of the applica-
tion as a third identifier in the UL In an example, the third
identifier may be a color such as white. An example of dif-
ferentiating a latest-deployed version of the application
against a planned version of the application in a particular
environment will be described in other parts of this specifi-
cation.

As mentioned above, the visualizing system (210) also
includes the comparing engine (212-4). The comparing
engine (212-4) compares, based on a selection, properties of
the different versions of the application. The user may select
at least one specific version of the application. In response to
selecting a specific version of the application, a UI is dis-
played on the display device (204) that includes a number of
properties of that specific version. The properties of a specific
version may include a header, an environment, a version
identification, a status, acomponent, or combinations thereof.
An example of comparing properties of different versions of
the application will be described in other parts of this speci-
fication.

FIG. 3 is a diagram of an example of a release pipeline,
according to one example of principles described herein. As
mentioned above, a display device may be used to display, via
a Ul, a representation of a release pipeline to a user. A release
pipeline may include a number of phases, such as a develop-
ment phase, a certification phase, a quality assurance phase, a
performance test phase, a system integration phase, a produc-
tion phase, and other phases. The phases aid a release man-
ager to visualize the delivery of applications throughout the
lifecycle. Further, the release pipeline may include a number
of applications and versions of those applications.

As illustrated in FIG. 3, the representation of a release
pipeline (301) is displayed via a UI (300). As illustrated, the
release pipeline (301) includes a header (302-1), a first phase
(302-2), a second phase (302-3), and a third phase (302-4)
represented as columns.

The header (302-1) may be used to navigate the release
pipeline (301) via a number of labels (306, 308, 310, 312,
314). As will be described below, the header (302-1) func-
tions as a vertical header for the release pipeline (301). For
example, the header labels (306, 308, 310, 312, 314) function
to identify information, such as phases, environments, and
applications associated with rows of the release pipeline
(301). In the illustrated example, the header (302-1) includes
a label for phases (306). The label for phases (306) may be
used to display names of phases in the first phase (302-2), the
second phase (302-3), and the third phase (302-4). For
example, the first phase (302-2) may be a development phase
(306-1). The second phase (302-3) may be a system integra-
tion test phase (306-2). The third phase (302-4) may be a

40

45

50

10

performance test phase (306-3). As a result, all information
pertaining to the first phase (302-2), the second phase (302-
3), and the third phase (302-4) is organized in the respective
columns.

As illustrated, the header (302-1) may include a label for
environments (308). The label for environments (308) may be
used to display the name of the environment in the first phase
(302-2), the second phase (302-3), and the third phase (302-
4). For example, the first phase (302-2) may be named DEV-1
environment (308-1). The second phase (302-3) may be
named STI-3 environment (308-2). The third phase (302-4)
may be named PT-1 environment (308-3). As a result, all
information pertaining to the first phase (302-2), the second
phase (302-3), and the third phase (302-4) is organized in the
respective columns.

In the illustrated example, the release pipeline (301) may
also include a radio buttons for selecting the display of either
“upcoming” products (310) or the “latest” products (312).
The option for “upcoming” (310) may be used to display the
date for upcoming applications in the first phase (302-2), the
second phase (302-3), and the third phase (302-4). A first
radio button (330-1) may be associated with the label for
“upcoming” (310). If the user selects the first radio button
(330-1), the release pipeline (301) displays planned version
of the application on top of latest-deployed versions of the
application in the first phase (302-2), the second phase (302-
3), and the third phase (302-4). Further, the “upcoming” label
(310) is overlapped over a “latest” label (312) as illustrated in
FIG. 3. As a result, the first radio button (330-1) may be used
as a Ul control or switch for displaying upcoming applica-
tions.

Further, the release pipeline display (301) may include the
label for “latest” (312). A second radio button (330-2) may be
associated with the label for “latest” (312). If the user selects
the second radio button (330-2), the release pipeline (301)
displays latest-deployed versions of the application on top of
planned version of the application in the first phase (302-2),
the second phase (302-3), and the third phase (302-4). In this
case, the “latest” label (312) is overlapped over the “upcom-
ing” label (310) as will be illustrated later on in the specifi-
cation. As a result, the second radio button (330-2) may be
used as a Ul control or switch for displaying latest applica-
tions.

As illustrated, the header (302-1) may include a label for
applications (314). The user may select one of the labels (306,
308, 310, 312, 314) to navigate in the representation of the
release pipeline (301). For example, if the user selects the
label for applications (314), a release version (316), applica-
tion A (318-1), application B (318-2), application C (318-3),
and application D (318-4) may be displayed in the release
pipeline display (301). Specifically, versions (320, 322, 324)
of'the applications (318) are displayed in the first phase (302-
2), the second phase (302-3), and the third phase (302-4). For
example, application A (318-1) may include version 2.4.0
(320-2) for the development phase (306-1), version 2.4.0
(322-2) for the system integration test phase (306-2), and
version 2.3.6 (324-2) for the performance test phase (306-3).
As illustrated, the versions (320, 322, 324) of the applications
(318) may be rendered in a number of patterns and/or colors.
For example, if a version of the application is rendered in
white, the version of the application is a latest-deployed ver-
sion of an application. Further, a version of the application
may be rendered in a dot pattern to indicate an age of the
application. For example, version 2.4.6 (322-4) is an older
later version of application C (318-3) than version 2.4.5
(320.4) for application C (318-3). Further, if a version of the

US 9,417,869 B2

11

application is rendered in a diagonal pattern, the version of
the application is a focus version. As depicted version 2.4.3
(324-3) is a focus version.

While this example has been described with reference to
one environment associated with one phase, several environ-
ments may be associated with a phase. For example, a phase
may include a first environment for a first operating system
and a second environment for a second operating system.

FIG. 4 is a diagram of an example of selecting a phase from
a number of phases in a release pipeline, according to one
example of principles described herein. As mentioned above,
avisualizing system includes the selecting engine. The select-
ing engine allows a user to selects a phase.

As mentioned above, a release pipeline (401) may be dis-
played to a user via a Ul (400). As illustrated in FIG. 4, the
release pipeline (401) includes a number of phases (402-2,
402-3, 404-4) represented as columns. In an example, the
number of phases (402-2, 402-3, 404-4) may include labels to
identify the phases (402-2, 402-3, 404-4) such as a latest
phase (406-1), a development phase (406-2), and a certifica-
tion phase (402-4). Although not illustrated, the release pipe-
line (401) may include other phases such as a quality assur-
ance phase, a performance test phase, a system integration
phase, a production phase, or combinations thereof. A user
may select at least one of the phases (402-2, 402-3, 404-4), via
the user device of FIG. 2, and the selecting engine of FIG. 2
receives the selection. For example, the user may select a
phaseby clicking a button on a mouse associated with the user
device of FIG. 2 on any of the columns associated with the
phases (402-2, 402-3, 404-4).

For example, the user may select a development phase
(406-2) by selecting the second phase (402-3). In this
example, when the user selects the development phase (406-
2) version A2.0.3 (422-2) becomes the target version for
application B (418-2) and version 1.0.1 (422-3) becomes the
target version for application C (418-3). As mentioned above,
a target version for an application is indicated with a first
identifier. In this example, the first identifier may be a pattern,
such a horizontal pattern. As a result, version A2.0.3 (422-2)
and version 1.0.1 (422-3) are rendered in horizontal patterns.
In other example, the first identifier may be rendered as a
color, varying line weight or on a numeric or other scale. For
example, the first identifier may be rendered as the color
green. Further, the first identifier may include four thick lines
that create a boarder around the target version. Further, the
thinner the four lines, the more the version of the application
differs from the target version. In another example, the scale
may be represented as numbers, such as 0 to 10, where 10
indicates the version of the application is a target version and
0 indicates the version has no similarities to the target version.
Further, the second identifier and third identifier may be rep-
resented as described here with line weight or a numerical
scale.

As mentioned above, the visualizing system of FIG. 2
renders all the versions (420, 422, 424) of the applications
(418) with a first identifier or a second identifier. As men-
tioned above, the second identifier represents a degree to
which the versions of the application match the target version.
Again, the second identifier may be depicted with by the
intensity of a dot pattern, intensity of a color, different line
weights, a numeric or other scale, or combinations thereof.

As illustrated in FIG. 4, version 3.4.2 (420-1) of applica-
tion A (418-1) is rendered as a pattern such as a light dot
pattern. In an example, the light dot pattern indicates that
version 3.4.2 (420-1) of application A (418-1) is very differ-
ent from the target version for application A. This is because

25

40

45

55

12

version 3.4.2 (420-1) of application A (418-1) does not have
a corresponding target version.

As illustrated, version A1.2.3 (420-2) of application B
(418-2) is rendered as the light dot pattern. Further, version
A4.0.2 (420-2) of application B (418-2) is rendered as a
pattern, such as a dark dot pattern. As a result, version A4.0.2
(420-2) of application B (418-2) is has many similarities to
the target version, in this example, version A2.0.3 (422-2) of
application B (218-2).

Further, version 1.0.1 (420-3) of application C (418-3) is
render as a pattern such as a horizontal pattern. In this
example, since version 1.0.1 (420-3) of application C (418-3)
is rendered as a horizontal pattern, version 1.0.1 (420-3)
matches the target version, in this example, version 1.0.1
(422.3).

As illustrated, version 2.3.0 (420-4) of application D (418-
4) is rendered as a pattern such as a light dot pattern. The light
dot pattern indicates that version 2.3.0 (420-4) of application
D (418-4) is significantly different from the target version for
application D (418-4). This is because version 2.3.0 (420-4)
of application D (418-4) does not have a corresponding target
version. As a result, the release pipeline (401) is used to
represent, via the Ul (400), a congruency for a number of
versions (420, 422, 424) of applications (418) compared
against target versions (422-2, 422-3) of the applications
(418) across the development phase (406) of the release pipe-
line (401).

FIG. 5A is a diagram of an example of differentiating a
latest-deployed version of an application against a planned
version of the application in a particular environment, accord-
ing to one example of principles described herein. As men-
tioned above, a differentiating engine of FIG. 2 may be used
to differentiate a latest-deployed version of the application
against a planned version of the application in a particular
environment.

In the example of FIGS. 5A and 5B, a certification phase
(506-3) is selected. As a result, version A4.0.2 (542-1)
becomes the target version. Further, the other versions (520,
522) are rendered accordingly.

In the illustrated example, by default, the representation of
the release pipeline (501) displays the latest-deployed version
of'an application for a given environment in the foreground of
the release pipeline (501). Differentiating a latest-deployed
version of an application against a planned version of the
application in a particular environment includes overlapping
coordinates associated with the latest-deployed version of the
application and the planned version of the application in the
Ul As a result, version A4.0.2 (524-1) is illustrated in the
background of the release pipeline (501). Further, version
A2.0.2(524-2), version 1.0.1 (524-3), and version 2.3.0 (524-
4) are illustrated in the foreground of the release pipeline
(501). Further, their coordinates are overlapped as illustrated
in FIG. 5A. As mentioned above, this gives a stacking visual
effect that conveys the presence of other versions of an appli-
cation.

FIG. 5B is a diagram of an example of differentiating a
latest-deployed version for an application against a planned
version of the application in a particular environment, accord-
ing to one example of principles described herein. As men-
tioned above, a differentiating engine of FIG. 2 may be used
to differentiate a latest-deployed version of the application
against a planned version of the application in a particular
environment.

As mentioned above, by default, the release pipeline (551)
displays the latest-deployed version of an application for a
given environment in the foreground of the release pipeline

US 9,417,869 B2

13

(551). However, the planned version of an application may be
displayed in the foreground of the release pipeline (551).

For example, the user may select the upcoming label (510)
via a first radio button (530-1). In the illustrated example, the
first radio button (530-1) of the upcoming label (510)
exchanges the latest-deployed version of the application and
the planned version of the application from a background to a
foreground of the UI (550). As a result, version A4.0.2 (524-
1) is illustrated in the foreground of the release pipeline (551).
Further, version A2.0.2 (524-2), version 1.0.1 (524-3), and
version 2.3.0 (524-4) are illustrated in the background of the
release pipeline (551). Further their coordinates are over-
lapped as illustrated in FIG. 5B.

Intheillustrated example, the user may return to the release
pipeline (551) of FIG. 5A by selecting the latest label (512)
via a second radio button (530-2). As a result, the latest-
deployed version of an application for a given environment is
displayed in the foreground of the release pipeline (551). As
mentioned above, this gives a stacking visual effect that con-
veys the presence of other versions of an application.

FIG. 6A is adiagram of an example of comparing, based on
a selection, properties of versions of an application, accord-
ing to one example of principles described herein. As will be
describe below, a user may select a version of an application.
In response to selection of a version of the application, a
comparison Ul displays properties of that version of the appli-
cation.

As mentioned above, the visualizing system of FIG. 2
includes a comparing engine. The comparing engine com-
pares, based on a user selection, properties of the selected
version or versions of the application. Thus, the user may
select at least one specific version of an application. For
example, the user may select version Al.2.3 (320-2) and
version A2.0.3 (622-2).

In this example, by selecting at least one specific version of
the versions of an application, a comparison Ul (642) is
displayed. The comparison Ul (642) includes a number of
properties of the selected version of the application. The
properties of that specific version of the application include a
header (640). In the illustrated example, the header (640) may
be application B, since the user selected versions of applica-
tion B (618-2).

Further, the properties of the at least one specific version of
the different versions of an application includes environments
(630). In an example, version A1.2.3 (320-2) may have been
associated with a latest environment and version A2.0.3 (622-
2) may have been associated with an environment named
DEV-1 environment. As a result, the comparison Ul (642)
displays the latest environment (630-1) and the DEV-1 envi-
ronment (630-2).

As illustrated, the properties of the at least one specific
version of the versions of an application includes versions
(632). Since the user selected version A1.2.3 (320-2) and
version A2.0.3 (622-2), version Al1.2.3 (632-1) and version
A2.0.3 (632-2) are displayed in the comparison Ul (642).

Further, the properties of the at least one specific version of
the application includes statuses (634). In the illustrated
example, statuses may include unit tests pass, integration
candidate, quality assurance manager review pass, manual
quality assurance pass, unit tested, other statuses, or combi-
nations thereof. As a result, the comparison Ul (642) may
display any of these statuses for version A1.2.3 (632-1) in
status one (634-1). Further, the comparison Ul (642) may
display any of these statuses for version A2.0.3 (632-2) in
status two (634-2).

As illustrated, the properties of the at least one specific
version of the application includes an identification of com-

10

15

20

25

30

35

40

45

50

55

60

65

14

ponents (636). In an example, the components (636) may
correspond to the versions (632). In an example, the compo-
nents (636) may include components such as a print compo-
nent, a display component, other components, or combina-
tions thereof. As illustrated, the comparison UI (642) displays
a display component (636-1) for version A1.2.3 (632-1), and
a print component (636-2) for version A2.0.3 (632-2).

FIG. 6B is a diagram of an example of comparing, based on
a selection, properties of version of an application, according
to one example of principles described herein. As mentioned
above, a user may select a version of an application. By
selecting the version of the application, a comparison Ul
displays properties of the version of the application.

In the illustrated example, the user may select a third ver-
sion of an application to be displayed via the comparison Ul
(642). For example, the user selects version A4.0.2 (624-1). In
an example, the environment, version, status, and compo-
nents for version A4.0.2 (624-1) are displayed via the com-
parison Ul (642). For example, an environment named
CERT-1 environment (630-3) is displayed as the environment
for version A4.0.2 (624-1) via the comparison Ul (642). Ver-
sion A4.0.2 (632-3) is displayed as the version via the com-
parison UI (642). Status three (634-3) is displayed as for the
statues (634) via the comparison Ul (642). Further, display
component (636-3) is displayed for the components (636) via
the comparison Ul (642). Further, the user may select an
additional version of an application to be displayed via the
comparison Ul (642).

FIG. 7 is a flowchart of an example of a method for visu-
alizing a congruency of versions of an application across
phases of a release pipeline, according to one example of
principles described herein. In one example, the method
(700) may be executed by the visualizing system (100) of
FIG. 1. In other examples, the method (700) may be executed
by other systems (i.e. system 200). In this example, the
method (700) includes representing (701), via a U], a congru-
ency for a number of versions of an application compared
against a target version of the application across phases of a
release pipeline, the congruency for the number of versions of
the application represented as identifiers, differentiating
(702) a latest-deployed version of the application against a
planned version of the application in a particular environ-
ment, and comparing (703), based on a selection, properties
of the versions of the application.

As mentioned above, the method (700) includes represent-
ing (701), via a Ul, a congruency for a number of versions of
an application compared against a target version of the appli-
cation across phases of a release pipeline, the congruency for
the number of versions of the application represented as iden-
tifiers. In one example, representing (701), via a UL, a con-
gruency for a number of versions of an application compared
against a target version of the application across phases of a
release pipeline, the congruency for the number of versions of
the application represented as identifiers includes identifying
the target version. In this example, there may be a number of
versions of an application associated with a phase. Once a
user selects a phase, the versions of the application associated
with the selected phase become the target version.

Further, representing (701), via a UL, a congruency for a
number of versions of an application compared against a
target version of the application across phases of a release
pipeline, the congruency for the number of versions of the
application represented as identifiers includes determining if
each of the number of versions of the application are identi-
fied with a first identifier or a second identifier and marking
the number of versions of the application in the Ul with either
the first identifier or the second identifier. In the illustrated

US 9,417,869 B2

15

example, the first identifier identifies the versions of the appli-
cation that match the target version. In this example, these
versions of the application may be rendered with an identify-
ing pattern such as a horizontal pattern. The second identifier
represents a degree to which the versions of the application
match the target version. For example, if a second identifier
for a version of an application is a pattern, such as a dot
pattern, the more intense the dot pattern, i.e. a dark dot pat-
tern, the more that version of the application matches the
target version.

As mentioned above, the method (700) includes differen-
tiating (702) a latest-deployed version of the application
against a planned version of the application in a particular
environment. As mentioned above, differentiating (702) a
latest-deployed version of the application against a planned
version of the application in a particular environment
includes exchanging, based on a selection of a user, the latest-
deployed version of the application and the planned version
of'the application to a foreground or a background of the UI.

Further, differentiating (702) a latest-deployed version of
the application against a planned version of the application in
a particular environment includes overlapping coordinates
associated with the latest-deployed version of the application
and the planned version of the application in the Ul In the
illustrated example, differentiating (702) a latest-deployed
version of the application against a planned version of the
application in a particular environment includes identifying
the latest-deployed version of the application with a third
identifier in the UL. In the illustrated example, the third iden-
tifier may be a color, such as white. This creates a staking
effect as illustrated in FIGS. SA and 5B.

As mentioned above, the method (700) includes comparing
(703), based on a selection, properties of the versions of the
application. Comparing (703), based on a selection, the prop-
erties of the versions of the application includes selecting at
least one specific version of the application. For example, a
user may select least one specific version by clicking on a
version of an application.

Further, comparing (703) properties of the versions of the
application includes displaying the properties of the at least
one specific version. In this example, the properties of the
versions of the application include a header, an environment,
a version, a status, a component, or combinations thereof.

FIG. 8 is a flowchart of an example of a method for visu-
alizing a congruency of versions of an application across
phases of a release pipeline, according to one example of
principles described herein. In one example, the method
(800) may be executed by the visualizing system (100) of
FIG. 1. In other examples, the method (800) may be executed
by other systems (i.e. system 200). In this example, the
method (800) includes selecting (801) a phase from a number
of phases, representing (802), via a Ul, a congruency for a
number of versions of an application compared against a
target version of the application across the phases of arelease
pipeline, the congruency for the number of versions of the
application represented as identifiers, differentiating (803) a
latest-deployed version of the application against a planned
version of the application in a particular environment, and
comparing (804), based on a selection, properties of the ver-
sions of the application.

As mentioned above, the method (800) includes selecting
(801) a phase from a number of phases. In an example, the
number of phases may be displayed, via a Ul, in a release
pipeline. In an example, the phases may include a develop-
ment phase, a certification phase, a quality assurance phase, a
performance test phase, a system integration phase, a produc-
tion phase, and other phases. In an example, a user may select

10

15

20

25

30

35

40

45

50

55

60

65

16

a phase by selecting a column corresponding to a phase. For
example, if the release pipeline includes column two which is
titled development phase, the use may click, via a mouse, on
column two. As a result, the development phase is selected.

FIG. 9 is a diagram of an example of a visualizing system,
according to the principles described herein. The visualizing
system (900) includes a representing engine (902), a differ-
entiating engine (904), and a comparing engine (906). In this
example, the visualizing system (900) also includes a select-
ing engine (908). The engines (902, 904, 906, 908) refer to a
combination of hardware and program instructions to per-
form a designated function. Each of the engines (902, 904,
906, 908) may include a processor and memory. The program
instructions are stored in the memory and cause the processor
to execute the designated function of the engine.

The representing engine (902) represents, via a U, a con-
gruency for a number of versions of an application compared
against a target version of the application across phases of a
release pipeline, the congruency for the number of versions of
the application represented as identifiers. In an example, the
identifiers may include a first identifier. In an example, the
first identifier represents versions of the application that
match the target version. Further, the identifiers include a
second identifier. In an example the second identifier repre-
sents a degree to which the versions of the application match
the target version. In an example, the second identifier is
rendered as an intensity of a color, a line, a scale, a pattern, or
combinations thereof. In an example, the representing engine
(902) identifies the target version, determines if each of the
number of versions of the application is rendered as a first
identifier or a second identifier, and renders the number of
versions of the application in the Ul as the first identifier or the
second identifier.

The differentiating engine (904) differentiates a latest-de-
ployed version of the application against a planned version of
the application in a particular environment. In an example, the
differentiating engine (904) exchanges, based on a selection
of a user, the latest-deployed version of the application and
the planned version of the application to a foreground or a
background of the UL Further, the differentiating engine
(904) overlaps coordinates associated with the latest-de-
ployed version of the application and the planned version of
the application in the Ul. Further, the differentiating engine
(904) renders the latest-deployed version of the application as
a third identifier in the UL

The comparing engine (906) compares, based on the selec-
tion, properties of the versions of the application. In the
illustrated example, the properties of the versions of the appli-
cation include a header, an environment, a version, a status, a
component, or combinations thereof. The comparing engine
(906) allows a user to select at least one specific version of the
versions of the application. The comparing engine (906) the
displays the properties of the at least one specific version.

The selecting engine (908) selects at least one phase from
anumber of phases. In an example, the selecting engine (908)
allows a user to select at least one of the phases.

FIG. 10 is a diagram of an example of a visualizing system,
according to the principles described herein. In this example,
the visualizing system (1000) includes processing resources
(1002) that are in communication with memory resources
(1004). Processing resources (1002) include at least one pro-
cessor and other resources used to process programmed
instructions. The memory resources (1004) represent gener-
ally any memory capable of storing data such as programmed
instructions or data structures used by the visualizing system
(1000). The programmed instructions shown stored in the
memory resources (1004) include a phase selector (1006), a

US 9,417,869 B2

17

target version identifier (1008), an identifier determiner
(1010), an identifier renderer (1012), a version exchanger
(1014), a coordinate overlapper (1016), a latest-deployed ver-
sion renderer (1018), a specific version selector (1020), and a
properties displayer (1022).

The memory resources (1004) include a computer readable
storage medium that contains computer readable program
code to cause tasks to be executed by the processing resources
(1002). The computer readable storage medium may be tan-
gible and/or physical storage medium. The computer read-
able storage medium may be any appropriate storage medium
that is not a transmission storage medium. A non-exhaustive
list of computer readable storage medium types includes non-
volatile memory, volatile memory, random access memory,
write only memory, flash memory, electrically erasable pro-
gram read only memory, or types of memory, or combinations
thereof.

The phase selector (1006) represents programmed instruc-
tions that, when executed, cause the processing resources
(1002) to select a phase from a number of phases. The target
version identifier (1008) represents programmed instructions
that, when executed, cause the processing resources (1002) to
identify a target version.

The identifier determiner (1010) represents programmed
instructions that, when executed, cause the processing
resources (1002) to determine if each of a number of versions
of an application are to be marked with a first identifier or a
second identifier. The identifier renderer (1012) represents
programmed instructions that, when executed, cause the pro-
cessing resources (1002) to render the number of versions of
the application in the Ul as marked with either the first iden-
tifier or the second identifier.

The version exchanger (1014) represents programmed
instructions that, when executed, cause the processing
resources (1002) to exchange, based on a selection of a user,
a latest-deployed version of the application and a planned
version of the application to a foreground or a background of
the UI. The coordinate overlapper (1016) represents pro-
grammed instructions that, when executed, cause the process-
ing resources (1002) to overlapping coordinates associated
with the latest-deployed version of the application and the
planned version of the application in the Ul

The latest-deployed version renderer (1018) represents
programmed instructions that, when executed, cause the pro-
cessing resources (1002) to mark the latest-deployed version
of'the application with a third identifier in the UL The specific
version selector (1020) represents programmed instructions
that, when executed, cause the processing resources (1002) to
select at least one specific version of the versions of the
application. The properties displayer (1022) represents pro-
grammed instructions that, when executed, cause the process-
ing resources (1002) to display properties of the at least one
specific version.

Further, the memory resources (1004) may be part of an
installation package. In response to installing the installation
package, the programmed instructions of the memory
resources (1004) may be downloaded from the installation
package’s source, such as a portable medium, a server, a
remote network location, another location, or combinations
thereof. Portable memory media that are compatible with the
principles described herein include DVDs, CDs, flash
memory, portable disks, magnetic disks, optical disks, other
forms of portable memory, or combinations thereof. In other
examples, the program instructions are already installed.
Here, the memory resources can include integrated memory
such as a hard drive, a solid state hard drive, or the like.

25

30

40

45

50

55

65

18

In some examples, the processing resources (1002) and the
memory resources (1004) are located within the same physi-
cal component, such as a server, or a network component. The
memory resources (1004) may be part of the physical com-
ponent’s main memory, caches, registers, non-volatile
memory, or elsewhere in the physical component’s memory
hierarchy. Alternatively, the memory resources (1004) may
be in communication with the processing resources (1002)
over a network. Further, the data structures, such as the librar-
ies, may be accessed from a remote location over a network
connection while the programmed instructions are located
locally. Thus, visualizing system (1000) may be implemented
on a user device, on a server, on a collection of servers, or
combinations thereof.

The visualizing system (1000) of FIG. 10 may be part of a
general purpose computer. However, in alternative examples,
the visualizing system (1000) is part of an application specific
integrated circuit (ASIC).

The preceding description has been presented to illustrate
and describe examples of the principles described. This
description is not intended to be exhaustive or to limit these
principles to any precise form disclosed. Many modifications
and variations are possible in light of the above teaching.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operations of possible
implementations of systems, methods, and computer pro-
gram products. In this regard, each block in the flowchart or
block diagrams may represent a module, segment, or portion
of code, which has a number of executable instructions for
implementing the specific logical function(s). It should also
be noted that, in some alternative implementations, the func-
tions noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration and
combination of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and com-
puter instructions.

The terminology used herein is for the purpose of describ-
ing particular examples, and is not intended to be limiting. As
used herein, the singular forms “a,” “an” and “the” are
intended to include the plural forms as well, unless the con-
text clearly indicated otherwise. It will be further understood
that the terms “comprises” and/or “comprising” when used in
the specification, specify the presence of stated features, inte-
gers, operations, elements, and/or components, but do not
preclude the presence or addition of a number of other fea-
tures, integers, operations, elements, components, and/or
groups thereof.

What is claimed is:

1. A system for visualizing a congruency of versions of an
application across phases of a release pipeline, the system
comprising:

a selecting engine, comprising a processor, to select a

phase from a number of phases;

a representing engine, comprising a processor, to repre-
sent, via a user interface (Ul), a congruency for a number
of versions of an application compared against a target
version of the application across the phases of a release

US 9,417,869 B2

19

pipeline, the congruency for the number of versions of

the application represented with identifiers by:

identifying the target version;

determining if each of the number of versions of the
application are rendered as a first identifier or a sec-
ond identifier; and

rendering the number of versions of the application in
the UT as the first identifier or the second identifier;
a differentiating engine, comprising a processor, to difter-
entiate a latest-deployed version of the application
against a planned version of the application in a particu-
lar environment by:
exchanging, based on a selection of a user, the latest-
deployed version of the application and the planned
version of the application to a foreground or a back-
ground of the UT;

overlapping coordinates associated with the latest-de-
ployed version of the application and the planned
version of the application in the Ul; and

rendering the latest-deployed version of the application
as a third identifier in the UI; and

a comparing engine, comprising a processor, to compare,
based on a selection, properties of the versions of the
application.

2. The system of claim 1, in which the identifiers comprise:

afirst identifier, the first identifier representing the versions
of the application that match the target version; and

a second identifier, the second identifier representing a
degree to which the versions of the application match the
target version.

3. The system of claim 2, in which the second identifier
comprises an intensity of a color, a varying line weight, a
scale value, a pattern, or combinations thereof.

4. The system of claim 2, wherein:

the first identifier is at least one of a pattern and a color; and

the second identifier is an intensity of the pattern or the
color.

5. The system of claim 1, in which the properties of the
versions of the application comprise a header, an environ-
ment, a version, a status, a component, or combinations
thereof.

6. The system of claim 1, in which the comparing engine
compares, based on the selection, the properties of the ver-
sions for the application by:

selecting at least one specific version from the versions of
the application; and

displaying the properties of the at least one specific ver-
sion.

7. The system of claim 1, wherein the phase is at least one
of'a development phase, certification phase, a quality assur-
ance phase, a performance test phase, a system integration
phrase, and a production phase.

8. The system of claim 1, wherein:

identifying the target version comprises selecting a phase;
and

a version of the application associated with a selected
phase becomes the target version.

9. A computer program product for visualizing a congru-
ency of versions of an application across phases of a release
pipeline, comprising:

a non-transitory computer readable storage medium, said
tangible computer readable storage medium comprising
computer readable program code embodied therewith,
said computer readable program code comprising pro-
gram instructions that, when executed, causes a proces-
sor to:

10

15

20

25

30

35

40

45

50

55

60

65

20

select a phase from a number of phases, wherein:
aphase is a stage of development for an application; and
each phase has multiple versions of an application;

represent, via a user interface (UI), a congruency for a

number of versions of several applications compared
against a target version ofthe several applications across
phases of a release pipeline, the congruency for the
number of versions of the application represented as
identifiers, wherein:

the identifiers comprise:

a first identifier, which is a pattern, to represent the
versions of the application that match the target
version; and

a second identifier, which is an intensity of the pattern,
to represent a degree to which the versions of the
application match the target version; and

athird identifier, which is a color, to represent whether
a version is a latest-deployed version of the appli-
cation; and

the phase are represented as columns;

differentiate a latest-deployed version of the application
against a planned version of the application in a par-
ticular environment; and

compare, based on a selection, properties of the versions
of the application, wherein the properties that are
compared include a header, an environment, a ver-
sion, a status, a component, or combinations thereof;
and display, via the Ul, the release pipeline for the
several applications.

10. The product of claim 9, further comprising computer
readable program code comprising program instructions that,
when executed, cause said processor to select a phase from
the number of phases.

11. The product of claim 9, further comprising computer
readable program code comprising program instructions that,
when executed, cause said processor to differentiate a latest-
deployed version of the application against a planned version
of'the application in a particular environment.

12. The product of claim 9, further comprising computer
readable program code comprising program instructions that,
when executed, cause said processor to compare, based on a
selection, properties of the versions of the application.

13. The product of claim 9, in which identifiers comprise:

afirstidentifier, the first identifier representing the versions

of the application that match the target version; and

a second identifier, the second identifier representing a

degree to which the versions of the application match the
target version.

14. The product of claim 9, wherein a first identifier that
represents the versions of the application that match the target
version is a pattern.

15. The product of claim 9, further comprising computer
readable program code comprising program instructions that,
when executed cause said processor to display a comparison
user interface that displays a number of properties of selected
versions of the application.

16. The product of claim 15, further comprising computer
readable program code comprising program instructions that,
when executed cause said processor to display, in the com-
parison user interface, at least one of a status and a component
associated with the selected versions.

17. The product of claim 16, wherein a status comprises at
least one of a unit tests pass, an integration candidate, a
quality assurance manager review pass, a manual quality
assurance pass, and a unit tested.

US 9,417,869 B2

21

18. A system for visualizing a congruency of versions of an
application across phases of a release pipeline, the system
comprising:

a selecting engine, comprising a processor, to select a

phase from a number of phases, wherein:
aphase is a stage of development for an application; and
each phase has multiple versions of an application;

a representing engine, comprising a processor, to repre-
sent, viaa user interface (UI), a congruency for a number
of versions of an application compared against a target
version of the application across the phases of a release
pipeline, the congruency for the number of versions of
the application represented with identifiers, wherein:
the identifiers comprise:

a first identifier, which is a pattern, to represent the
versions of the application that match the target
version; and

10

15

22

a second identifier, which is an intensity of the pattern,
to represent a degree to which the versions of the
application match the target version; and

athird identifier, which is a color, to represent whether
a version is a latest-deployed version of the appli-
cation; and

the phases are represented as columns;

a differentiating engine, comprising a processor, to differ-
entiate a latest-deployed version of the application
against a planned version of the application in a particu-
lar environment; and

a comparing engine, comprising a processor, to compare,
based on a selection, properties of the versions of the
application, wherein the properties that are compared
include a header, an environment, a version, a status, a
component, or combinations thereof.

#* #* #* #* #*

